organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*E*)-2-{[4-tert-Butyl-5-(2,4-dichlorobenzyl)thiazol-2-yl]iminomethyl}phenol

Ai-Xi Hu,^a* Gao Cao^b and Ying-Qi Mang^b

^aCollege of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China, and ^bSchool of Chemical and Energy Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China

Correspondence e-mail: axhu0731@yahoo.com.cn

Received 14 November 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.110; data-to-parameter ratio = 18.0.

Geometric parameters of the title compound, $C_{21}H_{20}Cl_2N_2OS$, a Schiff base, are in the usual ranges. The 4-hydroxyphenyl group and thiazole ring are almost coplanar, with a dihedral angle of $2.4(1)^{\circ}$; the 2,4-dichlorobenzyl group is approximately perpendicular to the thiazole ring [dihedral angle = 86.6 (2) $^{\circ}$]. The molecular conformation is stabilized by an intramolecular O-H···N hydrogen bond.

Related literature

For related literature, see: Hu et al. (2006).

Experimental

Crystal data

C H CINOS	$V_{1} = 2024(2)(10)^{1/3}$
$C_{21}H_{20}CI_2N_2OS$	V = 2024.03 (18) A
$M_r = 419.35$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 8.3005 (4) Å	$\mu = 0.44 \text{ mm}^{-1}$
b = 19.0883 (10) Å	T = 173 (2) K
c = 13.3014 (7) Å	$0.48 \times 0.38 \times 0.33 \text{ mm}$
$\beta = 106.1210 \ (10)^{\circ}$	

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.818, T_{\max} = 0.869$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	248 parameters
$wR(F^2) = 0.110$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
4441 reflections	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

11999 measured reflections

 $R_{\rm int} = 0.027$

4441 independent reflections

3382 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).	
--	--

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1···N2	0.84	1.87	2.611 (2)	147

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2005); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2623).

References

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2005). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA. Hu, D. Y., Song, B. A., He, W., Yang, S. & Jin, L. H. (2006). Chin. J. Synth. Chem. 14, 319-328.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Acta Cryst. (2007). E63, o4812 [doi:10.1107/S1600536807059600]

(E)-2-{[4-tert-Butyl-5-(2,4-dichlorobenzyl)thiazol-2-yl]iminomethyl}phenol

A.-X. Hu, G. Cao and Y.-Q. Mang

Comment

In recent years, there has been considerable and increasing interest in the study of Schiff-base containing thiazole rings due to their antiviral, anticancer and antibacterial activities (Hu *et al.*, 2006). Herein we report the synthesis and crystal structure of (E)-2-((4-*tert*-butyl-5-(2,4-dichlorobenzyl)thiazol-2- ylimino)methyl)phenol.

A perspective view of the title compound with the labeling scheme is shown in Fig. 1 with dashed line indicateing the hydrogen bond forming a six-membered ring. The length of C=N double bond is 1.286 (2) Å. The 2,4-dichlorobenzyl is approximately perpendicular to the thiazole ring with a dihedral angle of 86.6 (2)°.

Experimental

A solution of thiourea (0.03 mol) and 2-bromo-1-(2,4-dichlorophenyl)-4,4-dimethylpentan-3-one (0.03 mol) in ethanol (70 ml) was refluxed for 9 h (monitoring by TLC). A part of the solvent was evaporated, and the precipitate formed was filtered out, dried, giving a yellowish crystalline substance which was the hydrobromide. The salt dissolved directly in ethanol and was neutralized with ammonia. The precipitate was filtered out and washed with water, dried to give 4-*tert*-butyl-5-(2,4-dichlorobenzyl)thiazol-2-amine. Then 1 mmol salicylal was dissolved in 5 ml of freshly dried alcohol and heated to 348 K, and the above-prepared alcohol solution of 4-*tert*-butyl-5-(2,4-dichlorobenzyl)thiazol-2-amine(1 mmol) was added dropwise and the resulting raction mixture was stirred at this temperature for furture 8.5 h. The mixture was then cooled, and the yellow solid was removed by filtration and recrystallized from dried alcohol to give the desired product. Yield: 75.1%. m.p. 417–418 K. Spectroscopic analysis: ¹H-NMR (CDCl₃, 400 MHz) (p.p.m.): 1.43(s, 9H, (CH₃)₃), 4.33(s, 2H, CH₂), 6.95(dd, J = 8.0 Hz, J = 8.0 Hz, 1H, 2-HOC₆H₄5-H), 7.00(d, J = 8.0 Hz, 1H, 2-HOC₆H₄3-H), 7.09(d, J = 8.0 Hz, J = 1.6 Hz, 1H, 2,4-Cl₂C₆H₃5-H), 7.40(ddd, J = 8.0 Hz, J = 8.0 Hz, J = 1.6 Hz, 1H, 2-HOC₆H₄4-H), 7.43(d, J = 1.6 Hz, 1H, 2,4-Cl₂C₆H₃3-H), 7.44(dd, J = 8.0 Hz, J = 1.6 Hz, 1H, 2-HOC₆H₄6-H), 9.06(s, 1H, N=CH), 12.28(s, 1H, OH). Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

The hydroxy H atom was positioned geometrically (O—H = 0.84 Å) and refined as riding [$U_{iso}(H) = 1.5 U_{eq}(O)$]. Methyl H atoms were positioned geometrically (C—H = 0.98 Å) and torsion angles refined to fit the electron density [$U_{iso}(H) = 1.5 U_{eq}(C)$]. Other H atoms were placed in calculated positions (methylene C—H = 0.99 Å, aromatic C—H = 0.95 Å) and refined as riding [$U_{iso}(H) = 1.2 U_{eq}(C)$].

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. the hydrogen bond is shown as a dashed line.

Fig. 2. The crystal packing of the title compound, with all H atoms omitted for clarity.

(E)-2-{[(4-tert-Butyl-5-(2,4-dichlorobenzyl)thiazol-2-yl]iminomethyl}phenol

 $F_{000} = 872$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6 - 27.0^{\circ}$

 $\mu = 0.44 \text{ mm}^{-1}$

T = 173 (2) K

Block, yellow

 $0.48 \times 0.38 \times 0.33 \text{ mm}$

 $D_{\rm x} = 1.376 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 5068 reflections

Crystal data

C₂₁H₂₀Cl₂N₂OS $M_r = 419.35$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.3005 (4) Å b = 19.0883 (10) Å c = 13.3014 (7) Å $\beta = 106.1210$ (10)° V = 2024.63 (18) Å³ Z = 4

Data collection

Bruker AXS SMART 1000 CCD diffractometer	4441 independent reflections
Radiation source: fine-focus sealed tube	3382 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.027$
T = 173(2) K	$\theta_{\text{max}} = 27.1^{\circ}$
ω scans	$\theta_{\min} = 1.9^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -10 \rightarrow 10$

$T_{\min} = 0.818, \ T_{\max} = 0.869$	$k = -20 \rightarrow 24$
11999 measured reflections	$l = -16 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.110$	$w = 1/[\sigma^2(F_o^2) + (0.051P)^2 + 0.8438P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
4441 reflections	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
248 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.03027 (7)	0.47395 (3)	0.30136 (6)	0.0597 (2)
C12	0.64380 (8)	0.36001 (4)	0.37832 (4)	0.05161 (18)
S1	0.48133 (6)	0.25450 (2)	0.58721 (4)	0.02904 (13)
C1	0.5844 (2)	0.17648 (9)	0.62257 (14)	0.0254 (4)
C2	0.7997 (2)	0.24959 (10)	0.65619 (14)	0.0261 (4)
C3	0.6734 (2)	0.29737 (10)	0.62080 (14)	0.0258 (4)
C4	0.5664 (2)	0.05644 (10)	0.63223 (14)	0.0262 (4)
H4	0.6855	0.0563	0.6557	0.031*
C5	0.4777 (2)	-0.00926 (10)	0.62176 (14)	0.0265 (4)
C6	0.3014 (2)	-0.01282 (10)	0.58307 (16)	0.0309 (4)
C7	0.2203 (3)	-0.07746 (11)	0.57246 (17)	0.0377 (5)
H7	0.1016	-0.0799	0.5463	0.045*
C8	0.3135 (3)	-0.13780 (11)	0.60019 (16)	0.0365 (5)
H8	0.2577	-0.1818	0.5930	0.044*
C9	0.4859 (3)	-0.13567 (11)	0.63817 (16)	0.0350 (5)
Н9	0.5480	-0.1778	0.6571	0.042*

C10	0.5676 (2)	-0.07210 (10)	0.64841 (15)	0.0306 (4)
H10	0.6864	-0.0707	0.6738	0.037*
C11	0.9897 (2)	0.25934 (11)	0.69580 (17)	0.0346 (5)
C12	1.0421 (3)	0.24370 (16)	0.8141 (2)	0.0601 (7)
H12A	1.1647	0.2416	0.8397	0.090*
H12B	0.9947	0.1986	0.8269	0.090*
H12C	1.0003	0.2809	0.8511	0.090*
C13	1.0742 (3)	0.20476 (14)	0.6436 (2)	0.0515 (6)
H13A	1.0452	0.2137	0.5681	0.077*
H13B	1.0355	0.1579	0.6560	0.077*
H13C	1.1961	0.2076	0.6731	0.077*
C14	1.0498 (3)	0.33084 (14)	0.6732 (3)	0.0745 (10)
H14A	1.1727	0.3315	0.6932	0.112*
H14B	1.0091	0.3664	0.7134	0.112*
H14C	1.0066	0.3410	0.5983	0.112*
C15	0.6701 (2)	0.37653 (10)	0.61058 (15)	0.0294 (4)
H15A	0.6787	0.3977	0.6798	0.035*
H15B	0.7686	0.3920	0.5881	0.035*
C16	0.5124 (2)	0.40248 (9)	0.53298 (14)	0.0267 (4)
C17	0.4866 (2)	0.39610 (10)	0.42552 (15)	0.0298 (4)
C18	0.3403 (3)	0.41804 (11)	0.35340 (17)	0.0353 (5)
H18	0.3262	0.4134	0.2803	0.042*
C19	0.2158 (2)	0.44676 (10)	0.39103 (18)	0.0367 (5)
C20	0.2354 (3)	0.45450 (11)	0.49643 (19)	0.0393 (5)
H20	0.1488	0.4747	0.5210	0.047*
C21	0.3834 (3)	0.43247 (10)	0.56634 (17)	0.0341 (5)
H21	0.3973	0.4380	0.6392	0.041*
N1	0.74610 (19)	0.18098 (8)	0.65692 (12)	0.0270 (3)
N2	0.48872 (19)	0.11518 (8)	0.61060 (12)	0.0267 (3)
01	0.20766 (18)	0.04525 (8)	0.55414 (14)	0.0452 (4)
H1	0.2704	0.0806	0.5635	0.068*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0377 (3)	0.0436 (3)	0.0777 (5)	0.0068 (2)	-0.0176 (3)	-0.0032 (3)
Cl2	0.0522 (4)	0.0697 (4)	0.0373 (3)	0.0217 (3)	0.0197 (3)	0.0039 (3)
S1	0.0232 (2)	0.0250 (2)	0.0365 (3)	-0.00092 (18)	0.00423 (19)	0.0030 (2)
C1	0.0287 (10)	0.0234 (9)	0.0241 (9)	-0.0013 (7)	0.0073 (8)	0.0007 (7)
C2	0.0258 (9)	0.0246 (9)	0.0273 (9)	-0.0024 (7)	0.0062 (7)	0.0000 (8)
C3	0.0243 (9)	0.0249 (9)	0.0265 (9)	-0.0041 (7)	0.0044 (7)	0.0014 (7)
C4	0.0253 (9)	0.0280 (10)	0.0249 (9)	-0.0030 (7)	0.0060 (8)	0.0005 (8)
C5	0.0300 (10)	0.0261 (10)	0.0227 (9)	-0.0014 (7)	0.0063 (8)	-0.0001 (7)
C6	0.0290 (10)	0.0280 (10)	0.0343 (11)	-0.0027 (8)	0.0066 (8)	-0.0019 (8)
C7	0.0295 (11)	0.0358 (12)	0.0463 (12)	-0.0099 (9)	0.0081 (9)	-0.0037 (10)
C8	0.0458 (12)	0.0267 (10)	0.0385 (11)	-0.0121 (9)	0.0143 (10)	-0.0028 (9)
C9	0.0468 (13)	0.0247 (10)	0.0321 (11)	0.0003 (9)	0.0090 (9)	0.0022 (8)
C10	0.0301 (10)	0.0292 (10)	0.0306 (10)	-0.0007 (8)	0.0054 (8)	0.0014 (8)

C11	0.0229 (9)	0.0325 (11)	0.0445 (12)	-0.0022 (8)	0.0024 (9)	0.0002 (9)
C12	0.0365 (13)	0.087 (2)	0.0478 (15)	0.0051 (13)	-0.0041 (11)	-0.0078 (14)
C13	0.0311 (12)	0.0542 (15)	0.0726 (17)	-0.0014 (10)	0.0200 (12)	-0.0005 (13)
C14	0.0275 (12)	0.0427 (15)	0.139 (3)	-0.0083 (10)	-0.0015 (15)	0.0170 (17)
C15	0.0311 (10)	0.0249 (10)	0.0300 (10)	-0.0023 (8)	0.0047 (8)	0.0006 (8)
C16	0.0299 (10)	0.0206 (9)	0.0291 (10)	-0.0025 (7)	0.0072 (8)	0.0037 (8)
C17	0.0323 (10)	0.0249 (10)	0.0329 (10)	0.0020 (8)	0.0098 (9)	0.0025 (8)
C18	0.0385 (12)	0.0299 (11)	0.0333 (11)	-0.0010 (9)	0.0032 (9)	0.0000 (9)
C19	0.0277 (10)	0.0232 (10)	0.0504 (13)	-0.0009 (8)	-0.0037 (9)	0.0032 (9)
C20	0.0308 (11)	0.0320 (11)	0.0564 (14)	0.0034 (9)	0.0143 (10)	0.0001 (10)
C21	0.0390 (12)	0.0288 (10)	0.0366 (11)	0.0017 (8)	0.0141 (9)	0.0009 (8)
N1	0.0259 (8)	0.0240 (8)	0.0301 (8)	-0.0020 (6)	0.0059 (7)	0.0009 (6)
N2	0.0262 (8)	0.0240 (8)	0.0289 (8)	-0.0035 (6)	0.0060 (7)	0.0010 (6)
O1	0.0271 (8)	0.0296 (8)	0.0722 (11)	-0.0007 (6)	0.0024 (7)	0.0017 (8)

Geometric parameters (Å, °)

Cl1—C19	1.745 (2)	C11—C13	1.527 (3)
Cl2—C17	1.740 (2)	C11—C12	1.541 (3)
S1—C1	1.7168 (19)	C12—H12A	0.9800
S1—C3	1.7367 (18)	C12—H12B	0.9800
C1—N1	1.295 (2)	C12—H12C	0.9800
C1—N2	1.398 (2)	С13—Н13А	0.9800
C2—C3	1.370 (3)	С13—Н13В	0.9800
C2—N1	1.384 (2)	C13—H13C	0.9800
C2—C11	1.529 (3)	C14—H14A	0.9800
C3—C15	1.517 (3)	C14—H14B	0.9800
C4—N2	1.286 (2)	C14—H14C	0.9800
C4—C5	1.442 (3)	C15—C16	1.507 (3)
C4—H4	0.9500	C15—H15A	0.9900
C5—C10	1.405 (3)	C15—H15B	0.9900
C5—C6	1.411 (3)	C16—C17	1.391 (3)
C6—O1	1.348 (2)	C16—C21	1.391 (3)
C6—C7	1.394 (3)	C17—C18	1.387 (3)
C7—C8	1.379 (3)	C18—C19	1.381 (3)
С7—Н7	0.9500	C18—H18	0.9500
C8—C9	1.380 (3)	C19—C20	1.374 (3)
С8—Н8	0.9500	C20—C21	1.384 (3)
C9—C10	1.378 (3)	С20—Н20	0.9500
С9—Н9	0.9500	C21—H21	0.9500
C10—H10	0.9500	O1—H1	0.8400
C11—C14	1.512 (3)		
C1—S1—C3	89.22 (9)	H12A—C12—H12C	109.5
N1-C1-N2	126.57 (17)	H12B-C12-H12C	109.5
N1-C1-S1	115.33 (14)	С11—С13—Н13А	109.5
N2-C1-S1	118.10 (13)	C11—C13—H13B	109.5
C3—C2—N1	114.54 (16)	H13A—C13—H13B	109.5
C3—C2—C11	130.90 (17)	C11—C13—H13C	109.5
N1—C2—C11	114.57 (16)	H13A—C13—H13C	109.5

C2—C3—C15	133.40 (17)	H13B—C13—H13C	109.5
C2—C3—S1	109.57 (14)	C11—C14—H14A	109.5
C15—C3—S1	116.97 (14)	C11—C14—H14B	109.5
N2—C4—C5	121.73 (17)	H14A—C14—H14B	109.5
N2—C4—H4	119.1	C11—C14—H14C	109.5
С5—С4—Н4	119.1	H14A—C14—H14C	109.5
C10—C5—C6	118.38 (17)	H14B—C14—H14C	109.5
C10—C5—C4	119.79 (17)	C16—C15—C3	112.31 (16)
C6—C5—C4	121.82 (17)	C16—C15—H15A	109.1
O1—C6—C7	118.32 (18)	С3—С15—Н15А	109.1
O1—C6—C5	121.51 (17)	C16—C15—H15B	109.1
C7—C6—C5	120.16 (19)	C3—C15—H15B	109.1
C8—C7—C6	119.5 (2)	H15A—C15—H15B	107.9
С8—С7—Н7	120.2	C17—C16—C21	116.82 (18)
С6—С7—Н7	120.2	C17—C16—C15	122.14 (17)
С7—С8—С9	121.40 (19)	C21—C16—C15	121.02 (18)
С7—С8—Н8	119.3	C18—C17—C16	122.69 (18)
С9—С8—Н8	119.3	C18—C17—Cl2	118.06 (16)
C10C9C8	119.60 (19)	C16—C17—Cl2	119.24 (15)
С10—С9—Н9	120.2	C19—C18—C17	117.96 (19)
С8—С9—Н9	120.2	C19-C18-H18	121.0
C9—C10—C5	120.95 (19)	C17—C18—H18	121.0
C9—C10—H10	119.5	C20-C19-C18	121.62 (19)
C5-C10-H10	119.5	C20—C19—Cl1	119.84 (17)
C14—C11—C13	107.9 (2)	C18—C19—C11	118.54 (17)
C14—C11—C2	114.02 (17)	C19—C20—C21	119.0 (2)
C13—C11—C2	108.69 (17)	С19—С20—Н20	120.5
C14—C11—C12	111.3 (2)	C21—C20—H20	120.5
C13—C11—C12	107.29 (19)	C20—C21—C16	121.9 (2)
C2-C11-C12	107.46 (17)	C20—C21—H21	119.0
C11—C12—H12A	109.5	C16—C21—H21	119.0
C11—C12—H12B	109.5	C1—N1—C2	111.35 (15)
H12A—C12—H12B	109.5	C4—N2—C1	118.08 (16)
C11—C12—H12C	109.5	С6—О1—Н1	109.5
C3—S1—C1—N1	0.42 (15)	N1—C2—C11—C12	-68.7 (2)
C3—S1—C1—N2	-178.71 (15)	C2—C3—C15—C16	159.3 (2)
N1—C2—C3—C15	176.90 (19)	S1—C3—C15—C16	-23.9 (2)
C11—C2—C3—C15	-2.5 (4)	C3-C15-C16-C17	-75.0 (2)
N1—C2—C3—S1	-0.1 (2)	C3-C15-C16-C21	103.3 (2)
C11—C2—C3—S1	-179.56 (17)	C21—C16—C17—C18	-0.1 (3)
C1—S1—C3—C2	-0.15 (14)	C15-C16-C17-C18	178.22 (18)
C1—S1—C3—C15	-177.72 (15)	C21—C16—C17—Cl2	179.24 (15)
N2-C4-C5-C10	-178.66 (18)	C15-C16-C17-Cl2	-2.4 (3)
N2-C4-C5-C6	2.7 (3)	C16—C17—C18—C19	-0.5 (3)
C10—C5—C6—O1	-178.73 (19)	Cl2—C17—C18—C19	-179.90 (16)
C4—C5—C6—O1	-0.1 (3)	C17—C18—C19—C20	0.8 (3)
C10—C5—C6—C7	0.3 (3)	C17—C18—C19—Cl1	-179.47 (15)
C4—C5—C6—C7	178.96 (18)	C18—C19—C20—C21	-0.4 (3)
O1—C6—C7—C8	179.2 (2)	Cl1—C19—C20—C21	179.86 (16)

C5—C6—C7—C8	0.1 (3)	C19—C20—C21—C16	-0.3 (3)
C6—C7—C8—C9	-0.1 (3)	C17—C16—C21—C20	0.5 (3)
C7—C8—C9—C10	-0.3 (3)	C15-C16-C21-C20	-177.82 (18)
C8—C9—C10—C5	0.7 (3)	N2-C1-N1-C2	178.49 (17)
C6—C5—C10—C9	-0.7 (3)	S1—C1—N1—C2	-0.6 (2)
C4—C5—C10—C9	-179.37 (18)	C3—C2—N1—C1	0.4 (2)
C3—C2—C11—C14	-13.1 (3)	C11—C2—N1—C1	179.96 (16)
N1-C2-C11-C14	167.5 (2)	C5-C4-N2-C1	-179.79 (16)
C3—C2—C11—C13	-133.5 (2)	N1-C1-N2-C4	-2.4 (3)
N1-C2-C11-C13	47.1 (2)	S1—C1—N2—C4	176.66 (14)
C3—C2—C11—C12	110.7 (2)		
Hydrogan bond geometry $(\hat{\lambda} \circ)$			
11yurogen-bonu geometry (A,)			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1—H1…N2	0.84	1.87	2.611 (2)	147

Fig. 2